Obstruction to Positive Curvature on Homogeneous Bundles
نویسنده
چکیده
Examples of almost-positively and quasi-positively curved spaces of the form M = H\((G, h) × F ) were discovered recently [9],[8]. Here h is a left-invariant metric on a compact Lie group G, F is a compact Riemannian manifold on which the subgroup H ⊂ G acts isometrically on the left, and M is the orbit space of the diagonal left action of H on (G, h)×F with the induced Riemannian submersion metric. We prove that no new examples of strictly positive sectional curvature exist in this class of metrics. This result generalizes the case F = {point} proven by Geroch [5].
منابع مشابه
Quasi-positive Curvature on Homogeneous Bundles
We provide new examples of manifolds which admit a Riemannian metric with sectional curvature nonnegative, and strictly positive at one point. Our examples include the unit tangent bundles of CP, HP and CaP, and a family of lens space bundles over CP.
متن کاملMetrics of positive Ricci curvature on quotient spaces
One of the classical problems in differential geometry is the investigation of closed manifolds which admit Riemannian metrics with given lower bounds for the sectional or the Ricci curvature and the study of relations between the existence of such metrics and the topology and geometry of the underlying manifold. Despite many efforts during the past decades, this problem is still far from being...
متن کاملPara-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کاملHomogeneous Vector Bundles
1. Root Space Decompositions 2 2. Weights 5 3. Weyl Group 8 4. Irreducible Representations 11 5. Basic Concepts of Vector Bundles 13 6. Line Bundles 17 7. Curvature 20 7.1. Curvature of tangent bundles 22 7.2. Curvature of line bundles 24 7.3. Levi curvature 25 8. Ampleness Formulas 27 8.1. Ampleness of irreducible bundles 28 8.2. Ampleness of tangent bundles 29 9. Chern Classes 32 9.1. Chern c...
متن کاملConditions for Nonnegative Curvature on Vector Bundles and Sphere Bundles
This paper addresses Cheeger and Gromoll’s question of which vector bundles admit a complete metric of nonnegative curvature, and relates their question to the issue of which sphere bundles admit a metric of positive curvature. We show that any vector bundle which admits a metric of nonnegative curvature must admit a connection, a tensor, and a metric on the base space which together satisfy a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005